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Titanocene-catalyzed formation of allylsilanes from allyl ethers
and chlorosilanes
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Abstract—A new method for silylation of allyl ethers with chlorosilanes has been developed by the use of Cp2TiCl2 as a catalyst.
This reaction proceeds efficiently at )20 �C in THF using nBuMgCl. A plausible reaction pathway via allyltitanocene intermediate
was proposed.
� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Allyl alcohols and their derivatives are useful synthetic
intermediates as readily available reagents for intro-
duction of allylic moieties into organic molecules.1

There have been developed a number of catalytic reac-
tions employing late transition metals2 that allowed the
use of a varied of allyl alcohol derivatives such as allyl
ethers, acetates, carbonates, sulfonates, etc. As for early
transition metal catalysts, it is known that Zr3 and Ti4

complexes catalyze carbon–carbon bond forming reac-
tion of allyl ethers with ethyl Grignard reagent, how-
ever, allyl ethers are still rarely used. We have recently
established new methods for regioselective silylation of
alkenes and 1,3-butadienes with chlorosilanes by the
combined use of Grignard reagents and titanocene5 or
zirconocene6 catalyst. Here we disclose the transforma-
tion of allyl ethers and a thioether to the corresponding
allylsilanes by the aid of titanocene catalyst using chloro-
silanes and nBuMgCl.

For example, to a THF solution of phenyl allyl ether
(1mmol), nPr3SiCl (2.0mmol), and nBuMgCl (2.5mmol)
was added a catalytic amount of Cp2TiCl2 (0.05mmol)
at )20 �C. After stirring for 15 h, the reaction was
quenched with H2O. NMR analysis of the crude mixture
indicated the formation of allyltripropylsilane (1) in 98%
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yield along with 94% yield of PhOSinPr3 (2) (Fig. 1). The
product was obtained in pure form in 94% yield by
HPLC.

When the reaction was carried out at 0 or 25 �C, the
yields of 1 decreased in 68% or 35%, respectively. The
use of EtMgCl instead of nBuMgCl resulted in poor
yield (28%)7 and no reaction took place with tBuMgBr
or PhMgCl. When Ti(OiPr)4 was used instead of
Cp2TiCl2, only a 10% yield of 1 was obtained. Cp2ZrCl2
was ineffective under the same conditions.

Results obtained using some other allyl ethers and
chlorosilanes are shown in Table 1. Alkyl and silyl allyl
ethers also afforded 1 in 71% and 78% yields, respec-
tively (runs 1 and 2). When cinnamyl phenyl ether 5 was
used, 6 was obtained regioselectively in good yield (run
3).8 Allyl ether 7 possessing a Ph group at the b-carbon
gave the corresponding allylsilane 8 in good yield (run
4). It should be noted that 6 was also formed from allyl
ether 9 (run 5). The evidence that allyl ethers 5 and 9
gave the identical product 6 implies that those reactions
involve the same intermediate. Two silyl groups could be
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Figure 1. Titanocene-catalyzed formation of allylsilane.
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Scheme 1. A plausible reaction pathway.

Table 1. Titanocene-catalyzed formation of allylsilanea

Run Substant R in R3Si–Cl Product Yield (%)b

1
nOctO

3

nPr 1 71

2
Me3SiO

4

nPr 1 78

3
PhO Ph

5
Et

Et3Si Ph

6
87 (83)

4 PhO

Ph

7

Et Et3Si

Ph

8

82 (78)

5

PhO

Ph
9

Et 6 94 (85)

6 O

10

nPr

nPr3Si

SinPr311

45 (42) [E/Z¼ 78/22]

7
PhS

12

nPr 1 79

aAllyl ether (1.0mmol), chlorosilane (2.0mmol), nBuMgCl (2.5 mmol), Cp2TiCl2 (0.05mmol), )20 �C, 15 h.
bNMR yield. Isolated yield is given in parentheses.
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introduced at terminal carbons of the 2-butene skeleton
of 2,5-dihydrofuran (10) (run 6). Phenylthio group could
also be replaced with a silyl group to give allylsilane in
79% yield (run 7).

A plausible reaction pathway of this reaction is outlined
in Scheme 1. Titanocene dichloride reacts with 2 equiv of
nBuMgCl at low temperatures to generate dibutyltit-
anocene (13),9 which readily decomposes to Ti(II) com-
plex 14 along with butane and butenes.9b Thus formed 14
reacts with allyl ether to afford allyltitanocene complex
15.10 Subsequent transmetallation of 15 with 2 equiv of
nBuMgCl gives allyl Grignard reagent 1611 and alkoxy-
magnesium compound (17) along with regeneration of
13. Then 16 and 17 react with chlorosilane to give
allylsilane 18 and alkoxysilane 19, respectively.

In order to confirm the validity of the proposed pathway,
we carried out several control experiments focusing on
the active species of the C–Si bond forming process.
Since it is known that (iPrO)2Ti(II) reacts with allyl
ethers to form (iPrO)2TiOR(allyl), which react with
aldehydes to give homoallyl alcohols,10 we first examined
whether a similar allyltitanocene(IV) complex can be
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formed in our reaction system. To a THF solution of
Cp2Ti(II), generated by the reaction of Cp2TiCl2 with
2 equiv of nBuLi,9 was added a stoichiometric amount of
cinnamyl phenyl ether 5 at )20 �C. After stirring for 1 h
benzaldehyde (1.5 equiv) was added and the solution was
stirred for another 1 h at 25 �C. NMR and GC analysis
indicated the formation of homoallyl alcohol in 63%
yield suggesting that 20 was generated. However, similar
reaction using Et3SiCl (2 equiv) instead of PhCHO under
the identical conditions did not afford the expected
product 6. On the other hand, 6 was obtained in 58%
yield when a reaction was performed in the presence of
nBuMgCl (2 equiv). These results suggest that allyltit-
anocene(IV) species (20) is generated in this reaction
system but inert toward chlorosilanes and that 6 is
obtained by the reaction of chlorosilane with 22 formed
by transmetallation of 20 with nBuMgCl (Scheme 2).12

In summary, a new method for preparation of allyl-
silanes from allyl ethers and chlorosilanes has been
developed by the aid of a titanocene catalyst. The present
reaction involves (i) oxidative addition of allyl ethers to
Cp2Ti(II), (ii) transmetallation of allyltitanocenes with
nBuMgCl to afford allyl Grignard reagents, and (iii)
electrophilic trapping of allyl Grignard reagents with
chlorosilanes in the carbon–silicon bond forming step.
There are many catalytic reactions using allyl ethers as
precursors of allyl anions or their synthetic equivalents.
In these reactions, the late transition metals have been
employed.2b;13 The present study provides the first
example of this type catalyzed by early transition metals.
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